
The harmonic oscillator: values of the SU(3) invariants

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1973 J. Phys. A: Math. Nucl. Gen. 6 453

(http://iopscience.iop.org/0301-0015/6/4/008)

Download details:

IP Address: 171.66.16.73

The article was downloaded on 02/06/2010 at 04:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0301-0015/6/4
http://iopscience.iop.org/0301-0015
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A:  Math., Nucl. Gen., Vol. 6, April 1973. Printed in Great Britain. 0 1973 

The harmonic oscillator : values of the SU(3) invariants 
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MS received 17 November 1972 

Abstract. Formulae are given relating the Hamiltonian of the three-dimensional harmonic 
oscillator to the second and third order invariants I, and I,, respectively, of its synmetry 
group SU(3). For those irreducible representations which are realized by wavefunctions 
of the harmonic oscillator, I, and I, are diagonal operators satisfying the relationship 
61, = 12(412+f)’”. 

1. Introduction 

It is well known that the n-dimensional harmonic oscillator possesses the unimodular 
unitary group in n dimensions, SU(n), as a symmetry group, that is, SU(n), whose genera- 
tors can be expressed as operators commuting with the harmonic oscillator Hamiltonian, 
completely accounts for the system’s energy degeneracy. This was shown for the two- 
dimensional case by Jauch and Hill (1940) and the generalization to the n-dimensional 
case discussed by Allen Baker Jr (1956). A discussion of the three-dimensional case is 
given by Lipkin (1965) and by Elliott (1958a, b, 1963), and Bargmann and Moshinsky 
(1960, 1961) in which the decomposition of the irreducible representations of SU(3) on 
restriction to its rotation subgroup O(3) is treated in great detail. 

In the treatments of the three-dimensional harmonic oscillator given so far, the 
irreducible representations of SU(3) are described in terms of Young tableux (or, equiva- 
lently, in terms of highest weights), it being shown that the energy levels correspond to a 
restricted class of representations, determined by the requirement of symmetry under 
permutations of the oscillator quanta (Lipkin 1965). The alternative specification of the 
irreducible representations in terms of the values of the group invariants is not used, 
although Bisiacchi and Budini (1966), by working backwards from the expression for 
the energy levels, do deduce what values these invariants must have. This treatment 
contrasts sharply with the usual group theoretical treatment of the hydrogen atom as 
summarized by, for instance, Bander and Itzykson (1966) and Hughes (1967), in which 
expressions for the invariants of the symmetry group in terms of the Hamiltonian are 
used to determine the energylevels and the irreducible representations which correspond 
to  them. 

The purpose of this paper is to give a parallel treatment of the three-dimensional 
harmonic oscillator, in which expressions are obtained giving the second and third order 
invariants I, and I,, respectively, in terms of the Hamiltonian H, and these used to 
derive the energy levels and the corresponding irreducible representations of SU(3). We 
shall find that those occurring are the ones for which the values of the invariants satisfy 
the nonlinear relationship 

613 = 1,(412 + I)’’,. 
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Althoughnosignificantlynew light isshedon the propertie softhe harmonicoscillator 
by this treatment, the relationship between I, and I, is interesting because of its non- 
linear nature. More specifically, it shows that those irreducible representations of the 
symmetry group of a quantum mechanical system which are realized by the states of the 
system need not be the ones for which all but one of the invariants vanish (Budini 1966). 

2. The SU(3) symmetry group 

The Schrodinger equation for the three-dimensional harmonic oscillator is 

H W )  = E W )  (1) 

where the Hamiltonian H is given by 

H = -- -+-+- +-(x:+x:+x;). 
2 p  i ax: ax; ax: 1 2 

p is the mass of the oscillator, r = ( x l ,  x , ,  x 3 )  its position vector relative to the centre 
of the potential, and k a positive constant giving the strength of the potential. A system 
of units in which )i = 1 is employed. We shall find it notationally convenient to use a 
set of coordinates r’ 3 (x i ,  x i ,  x j )  defined by 

r’ = ( ~ k ) ” ~ r ,  (3) 

H’ = -(p,’k)”’H. (4) 

and the normalized ‘Hamiltonian’ 

H‘ is given in terms of the new coordinates by the formula 

1 H’ = - -+-+- -(x;,+x;’+Xj’) 
2 ax;z ax? a2 ax;, a2 1 ( 5 )  

From the obvious rotational symmetry of the system, which is intimately related to 
the separability of its Schrodinger equation in spherical polar coordinates, it follows 
that the three-dimensional rotation group 0(3) ,  generated by the angular momentum 
owrators 

etc, is a symmetry group, and this immediately explains the degeneracy of its energy 
levels with respect to the magnetic quantum number m. However, the harmonic oscilla- 
tor shares with the hydrogen atom the property that its energy levels are also degenerate 
in the total angular momentum quantum number I ;  this extra degeneracy cannot be 
accounted for by O(3) symmetry alone and is a consequence of the possession by both 
systems of a larger symmetry group, O(4) for the hydrogen atom and SU(3) for the 
harmonic oscillator. 

The extra symmetry of the harmonic oscillator is related to the fact that (again, as 
in the case of the hydrogen atom) its Schrodinger equation can be separated in other 
coordinate systems as well as in spherical polars. From the extra constants of separation 
that arise one obtains new operators commuting with the Hamiltonian and, by repeated 
commutation of these amongst themselves and with the angular momentum operators 
until closure is achieved, one obtains the generators of the larger symmetry group. 
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Using separability of the harmonic oscillator's Schrodinger equation in either 
rectangular or cylindrical polar coordinates and carrying out the above procedure one 
arrives at the following set of nine hermitian operators which commute with H' : 

where in (6) and (7)' (i, j ,  kj  are cyclic permutations of (1,2,3) and in (8) i = 1,2,3. 
These operators satisfy the following commutation relations : 

[~51,L21 = -[MI,MzI = [M3,N21 = -[M3,N11 = iL3 

[L,,M,1 = -[L2,M11 = [L3,N21 = -[L3,N11 = -iM3 

[L, ,  M11 = 2iW3 - N2) 

[Ni, Nj] = [Ni, Mi] = [Ni, Li] = 0, (9) 

N , + N , + N 3  = H. (10) 

and two similar equations obtained from these by cyclic permutations 

and cyclic permutations 

and cyclic permutations, 

i = 1,2,3. 

The N also satisfy the relationship 

The nine operators together generate the group U(3), isomorphic to the direct product 
of SU(3) and U(1), the latter group being generated by H'. However, no useful purpose 
is achieved by including the Hamiltonian of a system amongst the generators of its 
symmetry group, so the above set of nine operators must be replaced by an independent 
set of eight operators from which the Hamiltonian is excluded. 

A convenient choice for these eight operators is given by 

H, = (2,/3)-'L,, H 2  = 6-'(2N3-Nl-N2) 

E , ,  = -(2J6)-'(N,-N,+iM3) 

E * ,  = -(4J3)- ' ( L ,  +iL, + M ,  f iM,) 

E*D = (4 , /3)- ' (~,  +~L, -M,T~M,) .  (11) 

H, and H, are hermitian operators, whereas E , ,  and E - ,  are hermitian conjugates 
as are, respectively, E , ,  and E - , ,  and E + p  and E - $ .  These operators are precisely the 
generators of SU(3) as given by Baird and Biedenharn (1963), where their commutation 
relations can be found. 

We end this section by noting one major difference in the way in which the symmetry 
groups arise for the harmonic oscillator and hydrogen atom. In the latter case (Bander 
and Itzykson 1966), the commutation relations of the operators commuting with the 
Hamiltonian involve the Hamiltonian itself. Consequently the energy has to be given 
a fixed value E ,  say, and the operators renormalized by a factor involving E before they 
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can be used to generate the symmetry group. According as E is fixed at  a negative or 
positive value, one obtains the group O(4) or the noncompact group O(3,l). In the 
case of the harmonic oscillator the Hamiltonian does not appear in the commutation 
relations, and the single group SU(3) is generated immediately without either any 
restriction to a fixed energy value or any renormalization being necessary. 

3. Relationship between the invariants 

Now that we have shown that SU(3) is the symmetry group of the harmonic oscillator, 
we determine which of its irreducible representations are realized by the system, and 
in so doing also derive the well known formula for the energy levels. SU(3) possesses 
two invariants I ,  and I,, whose forms in terms of the generators (11)  have been given 
by Baird and Biedenharn (1963) and are 

I, = H I  + H i  + E,E-,+ E-,E, + E p E - ,  + E EjjE - j j +  E-liEjj, (12) 

I ,  = ~ H , ( H ~ - 1 ) - 4 H 2 I 2 + 3 H : +  E&-,+ E-,E,)(3H2 - 1 )  

+ J3 H I(E,jE - p - E - BED) + J 6 ( E  - ,EpEp + E,E - F E  - p ) .  (13)  

These commute with all the group generators, and therefore their eigenvalues serve 
as a unique label for the irreducible representations. Defining p and q by the equations 

1 2  = 8P2+q2-Pq+3P) (14)  

I 3  = ~P--24)(2p+3-q) (p+q+3) ,  (15)  

and 

Baird and Biedenharn show that every unitary irreducible representation of SU(3) is 
specified by the pair of integers ( p ,  q) satisfying p 2 q 2 0, the dimension of the re- 
presentation ( p ,  q )  being &I- q + l)(p + 2)(q + 1). Furthermore, the representations ( p ,  q) 
and (p, p -  q) are mutually contragredient, from which we see that contragredient 
representations correspond to the same value of I , ,  and to opposite signs of the values 

By the substitution of equations ( 1 1 )  in (12) and (13)  we obtain expressions for I ,  
and I , in terms of the operators Li, M i  and N i  ( i  = 1,2,3) ; by the further use of equations 
(6) ,  (7) and (8) I, and I, can be expressed as differential operators in x', , xi and x i .  
Finally, employing equation ( 5 )  for H', we find that I ,  and I, are given in terms of H '  
by the formulae 

of I , .  

I ,  = $ ( H ' 2 - $ )  (16)  
and 

I - -&-(H', -$)HI. 
3 -  

From equation (16)  we obtain H' = +341, + 1)'12 ; to decide which sign to take 
we must consider the definition of the Hamiltonian in terms of the momentum operators 
pi = - i(a/ax,); this is 

and so, since both p and k are positive constants, H is a positive definite operator with 
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positive eigenvalues. H‘, therefore, has negative eigenvalues, so the relationship between 
H’ and I ,  must be 

H’ = -3412+ 1)”’. (18) 

Substitution of this into (17) yields the nonlinear relationship 

1, = + &12(412 -k 1)’”. (19) 

This is the condition which must be satisfied by the eigenvalues of the invariants in 
order that the corresponding representations of SU(3) be realized by the harmonic 
oscillator wavefunctions. To obtain their specification in terms of ( p ,  q)  we square (19) 
and use (14) and (15) for I ,  and I , .  After a short calculation this yields the equation 

O = 361: - I i ( 4 I Z  + 1) = -l Z A P  - 4 ) ( P  + l)(P+ 3)(q + 2)(P - 4 + 2). (20) 

The only solution of this equation consistent with the conditions that p ,  q be integers 
satisfying p 2 q 2 0 are clearly q = 0 or q = p ,  so the possible representations are the 
( p ,  0) or the contragredient ( p ,  p ) .  However, I ,  is negative for the latter case, whereas to 
be applicable to the harmonic oscillator it must be positive, so we finally obtain the 
appropriate representations to be the ( p ,  0), where p = 0,1,2,. . . . The corresponding 
values of the invariants are I ,  = &p(p + 3) and I ,  = &p(p + 3 ) ( 2 p  + 3), from which one 
easily obtains the eigenvalues - ( p + $ )  for H’. Finally, using H’ = - ( p / k ) ’ / ’ H ,  we 
deduce that the energy levels of the harmonic oscillator are E , ,  where 

(21) 

The degeneracy of the level E ,  equals the dimensions of the representation ( p ,  0) and is 
therefore i ( p +  l)(p+ 2). 

Thus, by means of a group theoretical treatment which precisely parallels that used 
for the hydrogen atom, we have rederived the well known formulae for the harmonic 
oscillator energy levels and their degeneracies. 
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